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ABSTRACT

A new strategy based on combinatorial optimization
of the port numbering in combination with the Mode
Matching method has been developed for the
fullwave analysis of complex networks. The
approach has been implemented on both serial and

parallel platforms and is shown to provide
excellent efficiency (more than 20 times of speed-
up) overcoming the limitations of previous
approaches based on graph theory.

INTRODUCTION

In order to avoid trimming and tuning of the circuit
realized The use of electromagnetic (EM) design
tools based on rigorous numerical methods is of
paramount importance or even indispensable in the
design of microwave circuits. When complex circuits
have to be designed, the numerical effort involved
by EM models, may easily become unaffordable.
Among the possible numerical methods, we consider
here the Mode Matching (MM) technique, as one of
the best performing approaches for the rigorous
modelling of microwave circuits [1-5]. In spite of its
efficiency, however, the MM analysis and,

particularly, the design of complex networks, needs
to be associated with suitable numerical strategies

in order to keep the numerical expenditure within

affordable limits.

The MM im~lementation we refer here is based on.
the Generalized Admittance

approach [1-3], After segmenting
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Matrix (GAM)

the network into

elementary cells, the GAM of each elementary cell

or discontinuity is computed, then GAMs of all cells

are combined to generate the following global

linear system of equations:

El=[23:1 ‘1)
where Ie and Ve are the currents and voltages at the

external ports, and Ic and V c the currents and

voltages at the connected ports. Equating the

currents at the connected ports by mean of the

equation r,IC = O we can simplfy (1) to obtaim

{

rvvc = o
(2)

Y:cvc = –Y:eve

where : Y~~ = r,yce and Ygc= rlycc.and:

Ic = yeeve+ yecvc (3)

The matrices rl and rv represent the constraints on

voltages and currents imposed by the topology of

the circuit.

The solution of the system (1) is obtained in two

steps. First we solve the linear system (2) for a

given excitation Ve at the external ports of the

network, then the currents at the external ports are

obtained using (3). In the usual applications only

the relationship between external variables

1, = Y~Ve is required. In a number of cases however

also the information on internal voltages (or

currents) may be necessary, as for the application of

the Adjoint Network Method [3].

In a previous paper [6], it has been shown that the

numerical core of the MM simulation is in the

solution of the linear system (2). Its performance can

be improved substantially by exploiting the

characteristic of the system matrix, which is

generally sparse, with a zero-percentage normally

over 907., It has also been shown that the y’c c

matrix pattern depends on the numbering of the

physical ports after segmenting the network into
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elementary cells. Depending on whether a

generally sparse or a banded (skyline) matrix is

obtained, very different solution times result. A

banded pattern is to be preferred, as banded direct

solvers are more efficient than sparse iterative

ones, Moreover, since the system matrix is non-

definite there is no chance of using direct sparse

solvers. The optimum numbering that minimizes the

bandwidth of the system matrix, can improve the

simulation times of up to 2 orders of magnitude. It

should also be reminded that solution times in a

banded solver have a quadratic dependence on the

matrix bandwidth.

Finding out the optimum port numbering in complex

networks is not trivial, as it is an NP-complete

problem [7]. In the previous above mentioned paper

[6], we have demonstrated that it is equivalent to

minimizing the bandwidth of the connection matrix,

and we have solved it implementing the modified

Reversed Cuthill-McKee (RCM) approach[7]. It is a

very efficient graph-theory-based method, we

experienced on very large cases such as a 4x4 Butler

matrix (Fig. 1). In this paper, limitations and

disadvantages of RCM are discussed. An

alternative and completely new solution to the

problem is then proposed to overcome such

limitations. The algorithm has been implemented

both on serial and parallel distributed memory

RISC platforms.

OPTIMUM PORT NUMBERING

The Butler matrix represents a typical microwave

network used in communication satellite circuits, It

has a relatively high degree of complexity, and

requires considerable computing resources. It is

therefore a good example to use as a test case.

The Butler matrix of Fig. 1 is divided into 2

symmetrical parts. Each part is segmented into 96

elementary cells with a total of 118 ports, An

experienced user of the MM simulation code has

generally some heuristic rule-of-thumb methods to

number the electric ports. In the previous paper [6],

we showed results obtained applying RCM to a
“heuristically” optimized numbering,

demonstrating the substantial efficiency of the

method. A further investigation however has

identified some important limitations. The first is

that the optimized numbering, thus the final

bandwidth of the system matrix (l), depend on the

starting numbering: The

substantial limitation is

second, and perhaps more

that the RCM has proved

to be ineffective for some initial numberings, In some

cases the bandwidth of the final connection matrix

is larger than the starting one. An example is shown

in Fig. 2. Fig. 2a shows a possible starting matrix

corresponding to a chosen initial numbering. Fig. 2b

shows the results obtained applying RCM to the

matrix of Fig. 2a. It can be observed that the final

bandwidth is 30% wider than the starting one. The

third and final limitation is that RCM can work

only on symmetrix matrices, and this is not

appropriate for a future extension of the MM

simulation to non-reciprocal devices.
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Figure 1: Butler matrix sequivalent circuit

and tructu~e

The dependence on the starting numbering is easily

explained, since RCM is a heuristic approach, that

does not guarantee the global optimization. The

RCM failure on some matrices, on the contrary, is a

less trivial subject, and studies are running to group

all the critical patterns into a certain “class”.

Anyway, both these limitations prevent the

implementation of the approach in an effective

CAD MM tool.

A different approach to the problem is proposed

here, based on Tabu Search (TS) [8], a combinatorial

optimization method to perform a global search
among the possible numberings. This allows one to

overcome the sensitivity to starting numberings, and

to deal successfully with all the matrix patterns

(non-symmetric also).

For the sake of conciseness, the implementation of

the method is not described here. The reader is
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addressed to [8] for a complete and exhaustive

description of TS.

RESULTS

The TS method is costful, from a computational

point of view: the optimization of the numbering on

the Butler’s matrix of Fig. 1 takes, on an IBM 250,

about 35 s (average value over a set of 5 cases),

a

b

Figure 2: a) Initial connection matrix

b) RCM optimized connection mat~ix

instead of the 0.05 s of RCM. This is why a parallel

implementation of the TS method becomes useful.

TS has been parallelized using the Parallel Virtual

Machine (PVM) [9] programming interface, on the

IBM SP2 at Perugia University. It is an 8 processor

distributed memory platform. A master-slave

paradigm has been followed on developing the

parallel TS. The computation times for different

numbers of processors are shown in Tab, I. Values

refer to an average over 5 different starting port

numberings. Like in all optimization problems,

different levels of optimization can be achieved,

depending on the number of steps performed by TS.

Times in Tab. I refer to 2000 steps of TS, enough to
achieve bandwidths differing less than 5% from

the global optimum. A comparison of data in Tab. I

with Ahmdal’s law [10] demonstrates the good

efficiency and scalability of the implemented

algorithm. One of the most interesting results is the

following. One of the possible “heuristically

optimized” numberings on the Butler’s matrix

generates the connection matrix of Fig. 3a, with a

bandwidth 75. Using the connection matrix of Fig.

3a, the system (1) so generated is solved in 9.5 s on

IBM 250-T. -

TY7-

a

111= 448 b

Figwe 2: a) Butler initial connection matrix

b) Tabu optimized Butler connection

mat~ix

Number of Computing time

processors in sec.

(2000 stem)

2 24.3

4 22.1

6 17.6

7 16.9

8 16.1

Table I

Applying TS to optimize the port numbering, after

nearly 40s (with 8 processors) the global optimum is

found, corresponding to the connection matrix in Fig.
3b. Its bandwidth is 6, Generating system @) with
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the so found numbering, the solution time is 0.37s on

IBM 250 T. As the numbering optimization is done

once, and does not depend on excitations and

frequency, for 100 frequency points the global times

are shown in Table 11.They refer to three different

situations: a “hand-chosen” numbering, a numbering

obtained with an intermediate-level optimization,

and a fine-level TS optimization. The user can

select the desired level by an appropriate choice of

the number of TS steps.

Numbering System Renumbering

Solution Time Time

Hand-tuned

950 s

[intermediate TS

optimization 48 s 16.1 S

Fine TS

Optimization I 37 s I 40 s

~ble II Timing is referred to 100 frequency

points and the renumbering is performed on 8

processors

CONCLUSIONS

The optimum port numbering is important to

improve the numerical efficiency of MM analysis.

This is of paramount importance when large

networks are to be studied. The RCM approach

implemented in the past is not appropriate for an

effective CAD tool, as it is not always able to

optimize the starting numbering. We have

demonstrated that a combinatorial approach, based

on TS, possibly exploiting a parallel distributed

memory architecture (IBM SP2), guarantees an

optimization whatever the starting numbering is.

Since the numbering is optimized only once, and does

not depend on excitations, frequencies, or physical

dimensions of the elementary cells, the TS

approach to the port renumbering is quite amenable

to a cooperative computing environment, where the

designer generally uses small platforms (entry level
RISC workstations) for the MM analysis, larger

parallel platforms being possibly used to find the

best numbering. This keeps the computational costs

relatively low, as the only numerical core is run on a

large platform, where prices for CPU use are

higher. In any case, the serial TS optimization

times are still good enough for a complete

implementation of the method on a traditional

workstation.

Finally, the approach is very general, and can be

successfully applied to complex circuits of any kind

(not only waveguide circuits) as well as to different

simulation techniques in the field of computational

electromagnetism.
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