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ABSTRACT

A new strategy based on combinatorial optimization
of the port numbering in combination with the Mode
Matching method has been developed for the
fullwave analysis of complex networks. The
approach has been implemented on both serial and
parallel platforms and is shown to provide
excellent efficiency (more than 20 times of speed-
up) overcoming the limitations of previous
approaches based on graph theory.

INTRODUCTION

In order to avoid trimming and tuning of the circuit
realized The use of electromagnetic (EM) design
tools based on rigorous numerical methods is of
paramount importance or even indispensable in the
design of microwave circuits. When complex circuits
have to be designed, the numerical effort involved
by EM models, may easily become unaffordable.
Among the possible numerical methods, we consider
here the Mode Matching (MM) technique, as one of
the best performing approaches for the rigorous
modelling of microwave circuits [1-5]. In spite of its
efficiency, however, the MM analysis and,
particularly, the design of complex networks, needs
to be associated with suitable numerical strategies
in order to keep the numerical expenditure within
affordable limits.

The MM implementation we refer here is based on
the Generalized Admittance Matrix (GAM)
approach [1-3]. After segmenting the network into
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elementary cells, the GAM of each elementary cell
or discontinuity is computed, then GAMs of all cells
are combined to generate the following global
linear system of equations:

L1 [Ye Y| Ve
= 1
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where I, and V,, are the currents and voltages at the

external ports, and I, and V the currents and

voltages at the connected ports. Equating the
currents at the connected ports by mean of the

equation: I',I, = 0 we can simplfy (1) to obtain:

{ r,v.=0
Ve Ve =YV
where: y/, =1}y, and y, =T}y . and:
L=y.V.+Y.V. (3)

The matrices I'r and 'y represent the constraints on
voltages and currents imposed by the topology of
the circuit.

The solution of the system (1) is obtained in two
steps. First we solve the linear system (2) for a
given excitation Ve at the external ports of the
network, then the currents at the external ports are
obtained using (3). In the usual applications only
the relationship between external variables

I, =Y.V, is required. In a number of cases however

(2)

also the information on internal voltages (or
currents) may be necessary, as for the application of
the Adjoint Network Method [3].

In a previous paper [6], it has been shown that the
numerical core of the MM simulation is in the
solution of the linear system (2). Its performance can
be improved substantially by exploiting the
characteristic of the system matrix, which is
generally sparse, with a zero-percentage normally
over 90%. It has also been shown that the y'cc
matrix pattern depends on the numbering of the
physical ports after segmenting the network into
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elementary cells. Depending on whether a
generally sparse or a banded (skyline) matrix is
obtained, very different solution times result. A
banded pattern is to be preferred, as banded direct
solvers are more efficient than sparse iterative
ones. Moreover, since the system matrix is non-
definite there is no chance of using direct sparse
solvers. The optimum numbering that minimizes the
bandwidth of the system matrix, can improve the
simulation times of up to 2 orders of magnitude. It
should also be reminded that solution times in a
banded solver have a quadratic dependence on the
matrix bandwidth.

Finding out the optimum port numbering in complex
networks is not trivial, as it is an NP-complete
problem [7]. In the previous above mentioned paper
[6], we have demonstrated that it is equivalent to
minimizing the bandwidth of the connection matrix,
and we have solved it implementing the modified
Reversed Cuthill-McKee (RCM) approach[7]. It is a
very efficient graph-theory-based method, we
experienced on very large cases such as a 4x4 Butler
matrix (Fig. 1). In this paper, limitations and
disadvantages of RCM are discussed. An
alternative and completely new solution to the
problem is then proposed to overcome such
limitations. The algorithm has been implemented
both on serial and parallel distributed memory
RISC platforms.

OPTIMUM PORT NUMBERING

The Butler matrix represents a typical microwave
network used in communication satellite circuits. It
has a relatively high degree of complexity, and
requires considerable computing resources. It is
therefore a good example to use as a test case.

The Butler matrix of Fig. 1 is divided into 2
symmetrical parts. Each part is segmented into 96
elementary cells with a total of 118 ports. An
experienced user of the MM simulation code has
generally some heuristic rule-of-thumb methods to
number the electric ports. In the previous paper [6],
we showed results obtained applying RCM to a
"heuristically” optimized numbering,
demonstrating the substantial efficiency of the
method. A further investigation however has
identified some important limitations. The first is
that the optimized numbering, thus the final
bandwidth of the system matrix (1), depend on the
starting numbering. The second, and perhaps more
substantial limitation is that the RCM has proved

190

to be ineffective for some initial numberings. In some
cases the bandwidth of the final connection matrix
is larger than the starting one. An example is shown
in Fig. 2. Fig. 2a shows a possible starting matrix
corresponding to a chosen initial numbering. Fig. 2b
shows the results obtained applying RCM to the
matrix of Fig. 2a. It can be observed that the final
bandwidth is 30% wider than the starting one. The
third and final limitation is that RCM can work
only on symmetrix matrices, and this is not
appropriate for a future extension of the MM
simulation to non-reciprocal devices.
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Figure 1: Butler matrix sequivalent circuit
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The dependence on the starting numbering is easily
explained, since RCM is a heuristic approach, that
does not guarantee the global optimization. The
RCM failure on some matrices, on the contrary, is a
less trivial subject, and studies are running to group
all the critical patterns into a certain "class'.
Anyway, both these limitations prevent the
implementation of the approach in an effective
CAD MM tool.

A different approach to the problem is proposed
here, based on Tabu Search (TS) [8], a combinatorial
optimization method to perform a global search
among the possible numberings. This allows one to
overcome the sensitivity to starting numberings, and
to deal successfully with all the matrix patterns
(non-symmetric also).

For the sake of conciseness, the implementation of
the method is not described here. The reader is



addressed to [8] for a complete and exhaustive
description of TS.

RESULTS

The TS method is costful, from a computational
point of view: the optimization of the numbering on
the Butler's matrix of Fig. 1 takes, on an IBM 250,
about 35 s (average value over a set of 5 cases),

a) Initial connection matrix
b) RCM optimized connection matrix

Figure 2:

instead of the 0.05 s of RCM. This is why a parallel
implementation of the TS method becomes useful.
TS has been parallelized using the Parallel Virtual
Machine (PVM) [9] programming interface, on the
IBM SP2 at Perugia University. It is an 8 processor
distributed memory platform. A master-slave
paradigm has been followed on developing the
parallel TS. The computation times for different
numbers of processors are shown in Tab. I. Values
refer to an average over 5 different starting port
numberings. Like in all optimization problems,
different levels of optimization can be achieved,
depending on the number of steps performed by TS.
Times in Tab. I refer to 2000 steps of TS, enough to
achieve bandwidths differing less than 5% from
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the global optimum. A comparison of data in Tab. I
with Ahmdal's law [10] demonstrates the good
efficiency and scalability of the implemented
algorithm. One of the most interesting results is the
following. One of the possible "heuristically
optimized" numberings on the Butler's matrix
generates the connection matrix of Fig. 3a, with a
bandwidth 75. Using the connection matrix of Fig.
3a, the system (1) so generated is solved in 9.5 s on
IBM 250 T.
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Figure 2: a) Butler initial connection matrix
b) Tabu optimized Butler connection
matrix
Number of Computing time
processors in sec.
(2000 steps)
1 35
2 24.3
4 22.1
6 17.6
7 16.9
8 16.1
Table 1

Applying TS to optimize the port numbering, after
nearly 40 s (with 8 processors) the global optimum is
found, corresponding to the connection matrix in Fig.
3b. Its bandwidth is 6. Generating system (1) with



the so found numbering, the solution time is 0.37 s on
IBM 250 T. As the numbering optimization is done
once, and does not depend on excitations and
frequency, for 100 frequency points the global times
are shown in Table IL.They refer to three different
situations: a "hand-chosen" numbering, a numbering
obtained with an intermediate-level optimization,
and a fine-level TS optimization. The user can
select the desired level by an appropriate choice of
the number of TS steps.

Numbering System Renumbering
Solution Time Time
Hand-tuned
950 s -
Intermediate TS
optimization 48s 16.1s
Fine TS
Optimization 37s 40s
Table II Timing is referred to 100 frequency

points and the renumbering is performed on 8
processors

CONCLUSIONS

The optimum port numbering is important to
improve the numerical efficiency of MM analysis.
This is of paramount importance when large
networks are to be studied. The RCM approach
implemented in the past is not appropriate for an
effective CAD tool, as it is not always able to
optimize the starting numbering. We have
demonstrated that a combinatorial approach, based
on TS, possibly exploiting a parallel distributed
memory architecture (IBM SP2), guarantees an
optimization whatever the starting numbering is.
Since the numbering is optimized only once, and does
not depend on excitations, frequencies, or physical
dimensions of the elementary cells, the TS
approach to the port renumbering is quite amenable
to a cooperative computing environment, where the
designer generally uses small platforms (entry level
RISC workstations) for the MM analysis, larger
parallel platforms being possibly used to find the
best numbering. This keeps the computational costs
relatively low, as the only numerical core is run on a
large platform, where prices for CPU use are
higher. In any case, the serial TS optimization
times are still good enough for a complete
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implementation of the method on a traditional
workstation.
Finally, the approach is very general, and can be
successfully applied to complex circuits of any kind
(not only waveguide circuits) as well as to different
simulation techniques in the field of computational
electromagnetism.
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